Copied to
clipboard

G = C32×C3.A4order 324 = 22·34

Direct product of C32 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C32×C3.A4, C623C9, C33.3A4, C62.26C32, (C3×C62).3C3, C3.2(C32×A4), (C2×C6).8C33, C222(C32×C9), C32.22(C3×A4), (C2×C6)⋊2(C3×C9), SmallGroup(324,133)

Series: Derived Chief Lower central Upper central

C1C22 — C32×C3.A4
C1C22C2×C6C3.A4C3×C3.A4 — C32×C3.A4
C22 — C32×C3.A4
C1C33

Generators and relations for C32×C3.A4
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=1, f3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 250 in 128 conjugacy classes, 78 normal (7 characteristic)
C1, C2, C3, C3, C22, C6, C9, C32, C2×C6, C2×C6, C3×C6, C3×C9, C33, C3.A4, C62, C32×C6, C32×C9, C3×C3.A4, C3×C62, C32×C3.A4
Quotients: C1, C3, C9, C32, A4, C3×C9, C33, C3.A4, C3×A4, C32×C9, C3×C3.A4, C32×A4, C32×C3.A4

Smallest permutation representation of C32×C3.A4
On 162 points
Generators in S162
(1 27 140)(2 19 141)(3 20 142)(4 21 143)(5 22 144)(6 23 136)(7 24 137)(8 25 138)(9 26 139)(10 56 130)(11 57 131)(12 58 132)(13 59 133)(14 60 134)(15 61 135)(16 62 127)(17 63 128)(18 55 129)(28 78 71)(29 79 72)(30 80 64)(31 81 65)(32 73 66)(33 74 67)(34 75 68)(35 76 69)(36 77 70)(37 103 149)(38 104 150)(39 105 151)(40 106 152)(41 107 153)(42 108 145)(43 100 146)(44 101 147)(45 102 148)(46 92 157)(47 93 158)(48 94 159)(49 95 160)(50 96 161)(51 97 162)(52 98 154)(53 99 155)(54 91 156)(82 124 114)(83 125 115)(84 126 116)(85 118 117)(86 119 109)(87 120 110)(88 121 111)(89 122 112)(90 123 113)
(1 82 100)(2 83 101)(3 84 102)(4 85 103)(5 86 104)(6 87 105)(7 88 106)(8 89 107)(9 90 108)(10 94 66)(11 95 67)(12 96 68)(13 97 69)(14 98 70)(15 99 71)(16 91 72)(17 92 64)(18 93 65)(19 125 147)(20 126 148)(21 118 149)(22 119 150)(23 120 151)(24 121 152)(25 122 153)(26 123 145)(27 124 146)(28 61 155)(29 62 156)(30 63 157)(31 55 158)(32 56 159)(33 57 160)(34 58 161)(35 59 162)(36 60 154)(37 143 117)(38 144 109)(39 136 110)(40 137 111)(41 138 112)(42 139 113)(43 140 114)(44 141 115)(45 142 116)(46 80 128)(47 81 129)(48 73 130)(49 74 131)(50 75 132)(51 76 133)(52 77 134)(53 78 135)(54 79 127)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(2 161)(3 162)(5 155)(6 156)(8 158)(9 159)(10 42)(12 44)(13 45)(15 38)(16 39)(18 41)(19 50)(20 51)(22 53)(23 54)(25 47)(26 48)(28 86)(29 87)(31 89)(32 90)(34 83)(35 84)(55 107)(56 108)(58 101)(59 102)(61 104)(62 105)(65 112)(66 113)(68 115)(69 116)(71 109)(72 110)(73 123)(75 125)(76 126)(78 119)(79 120)(81 122)(91 136)(93 138)(94 139)(96 141)(97 142)(99 144)(127 151)(129 153)(130 145)(132 147)(133 148)(135 150)
(1 160)(3 162)(4 154)(6 156)(7 157)(9 159)(10 42)(11 43)(13 45)(14 37)(16 39)(17 40)(20 51)(21 52)(23 54)(24 46)(26 48)(27 49)(29 87)(30 88)(32 90)(33 82)(35 84)(36 85)(56 108)(57 100)(59 102)(60 103)(62 105)(63 106)(64 111)(66 113)(67 114)(69 116)(70 117)(72 110)(73 123)(74 124)(76 126)(77 118)(79 120)(80 121)(91 136)(92 137)(94 139)(95 140)(97 142)(98 143)(127 151)(128 152)(130 145)(131 146)(133 148)(134 149)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)

G:=sub<Sym(162)| (1,27,140)(2,19,141)(3,20,142)(4,21,143)(5,22,144)(6,23,136)(7,24,137)(8,25,138)(9,26,139)(10,56,130)(11,57,131)(12,58,132)(13,59,133)(14,60,134)(15,61,135)(16,62,127)(17,63,128)(18,55,129)(28,78,71)(29,79,72)(30,80,64)(31,81,65)(32,73,66)(33,74,67)(34,75,68)(35,76,69)(36,77,70)(37,103,149)(38,104,150)(39,105,151)(40,106,152)(41,107,153)(42,108,145)(43,100,146)(44,101,147)(45,102,148)(46,92,157)(47,93,158)(48,94,159)(49,95,160)(50,96,161)(51,97,162)(52,98,154)(53,99,155)(54,91,156)(82,124,114)(83,125,115)(84,126,116)(85,118,117)(86,119,109)(87,120,110)(88,121,111)(89,122,112)(90,123,113), (1,82,100)(2,83,101)(3,84,102)(4,85,103)(5,86,104)(6,87,105)(7,88,106)(8,89,107)(9,90,108)(10,94,66)(11,95,67)(12,96,68)(13,97,69)(14,98,70)(15,99,71)(16,91,72)(17,92,64)(18,93,65)(19,125,147)(20,126,148)(21,118,149)(22,119,150)(23,120,151)(24,121,152)(25,122,153)(26,123,145)(27,124,146)(28,61,155)(29,62,156)(30,63,157)(31,55,158)(32,56,159)(33,57,160)(34,58,161)(35,59,162)(36,60,154)(37,143,117)(38,144,109)(39,136,110)(40,137,111)(41,138,112)(42,139,113)(43,140,114)(44,141,115)(45,142,116)(46,80,128)(47,81,129)(48,73,130)(49,74,131)(50,75,132)(51,76,133)(52,77,134)(53,78,135)(54,79,127), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (2,161)(3,162)(5,155)(6,156)(8,158)(9,159)(10,42)(12,44)(13,45)(15,38)(16,39)(18,41)(19,50)(20,51)(22,53)(23,54)(25,47)(26,48)(28,86)(29,87)(31,89)(32,90)(34,83)(35,84)(55,107)(56,108)(58,101)(59,102)(61,104)(62,105)(65,112)(66,113)(68,115)(69,116)(71,109)(72,110)(73,123)(75,125)(76,126)(78,119)(79,120)(81,122)(91,136)(93,138)(94,139)(96,141)(97,142)(99,144)(127,151)(129,153)(130,145)(132,147)(133,148)(135,150), (1,160)(3,162)(4,154)(6,156)(7,157)(9,159)(10,42)(11,43)(13,45)(14,37)(16,39)(17,40)(20,51)(21,52)(23,54)(24,46)(26,48)(27,49)(29,87)(30,88)(32,90)(33,82)(35,84)(36,85)(56,108)(57,100)(59,102)(60,103)(62,105)(63,106)(64,111)(66,113)(67,114)(69,116)(70,117)(72,110)(73,123)(74,124)(76,126)(77,118)(79,120)(80,121)(91,136)(92,137)(94,139)(95,140)(97,142)(98,143)(127,151)(128,152)(130,145)(131,146)(133,148)(134,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162)>;

G:=Group( (1,27,140)(2,19,141)(3,20,142)(4,21,143)(5,22,144)(6,23,136)(7,24,137)(8,25,138)(9,26,139)(10,56,130)(11,57,131)(12,58,132)(13,59,133)(14,60,134)(15,61,135)(16,62,127)(17,63,128)(18,55,129)(28,78,71)(29,79,72)(30,80,64)(31,81,65)(32,73,66)(33,74,67)(34,75,68)(35,76,69)(36,77,70)(37,103,149)(38,104,150)(39,105,151)(40,106,152)(41,107,153)(42,108,145)(43,100,146)(44,101,147)(45,102,148)(46,92,157)(47,93,158)(48,94,159)(49,95,160)(50,96,161)(51,97,162)(52,98,154)(53,99,155)(54,91,156)(82,124,114)(83,125,115)(84,126,116)(85,118,117)(86,119,109)(87,120,110)(88,121,111)(89,122,112)(90,123,113), (1,82,100)(2,83,101)(3,84,102)(4,85,103)(5,86,104)(6,87,105)(7,88,106)(8,89,107)(9,90,108)(10,94,66)(11,95,67)(12,96,68)(13,97,69)(14,98,70)(15,99,71)(16,91,72)(17,92,64)(18,93,65)(19,125,147)(20,126,148)(21,118,149)(22,119,150)(23,120,151)(24,121,152)(25,122,153)(26,123,145)(27,124,146)(28,61,155)(29,62,156)(30,63,157)(31,55,158)(32,56,159)(33,57,160)(34,58,161)(35,59,162)(36,60,154)(37,143,117)(38,144,109)(39,136,110)(40,137,111)(41,138,112)(42,139,113)(43,140,114)(44,141,115)(45,142,116)(46,80,128)(47,81,129)(48,73,130)(49,74,131)(50,75,132)(51,76,133)(52,77,134)(53,78,135)(54,79,127), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (2,161)(3,162)(5,155)(6,156)(8,158)(9,159)(10,42)(12,44)(13,45)(15,38)(16,39)(18,41)(19,50)(20,51)(22,53)(23,54)(25,47)(26,48)(28,86)(29,87)(31,89)(32,90)(34,83)(35,84)(55,107)(56,108)(58,101)(59,102)(61,104)(62,105)(65,112)(66,113)(68,115)(69,116)(71,109)(72,110)(73,123)(75,125)(76,126)(78,119)(79,120)(81,122)(91,136)(93,138)(94,139)(96,141)(97,142)(99,144)(127,151)(129,153)(130,145)(132,147)(133,148)(135,150), (1,160)(3,162)(4,154)(6,156)(7,157)(9,159)(10,42)(11,43)(13,45)(14,37)(16,39)(17,40)(20,51)(21,52)(23,54)(24,46)(26,48)(27,49)(29,87)(30,88)(32,90)(33,82)(35,84)(36,85)(56,108)(57,100)(59,102)(60,103)(62,105)(63,106)(64,111)(66,113)(67,114)(69,116)(70,117)(72,110)(73,123)(74,124)(76,126)(77,118)(79,120)(80,121)(91,136)(92,137)(94,139)(95,140)(97,142)(98,143)(127,151)(128,152)(130,145)(131,146)(133,148)(134,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162) );

G=PermutationGroup([[(1,27,140),(2,19,141),(3,20,142),(4,21,143),(5,22,144),(6,23,136),(7,24,137),(8,25,138),(9,26,139),(10,56,130),(11,57,131),(12,58,132),(13,59,133),(14,60,134),(15,61,135),(16,62,127),(17,63,128),(18,55,129),(28,78,71),(29,79,72),(30,80,64),(31,81,65),(32,73,66),(33,74,67),(34,75,68),(35,76,69),(36,77,70),(37,103,149),(38,104,150),(39,105,151),(40,106,152),(41,107,153),(42,108,145),(43,100,146),(44,101,147),(45,102,148),(46,92,157),(47,93,158),(48,94,159),(49,95,160),(50,96,161),(51,97,162),(52,98,154),(53,99,155),(54,91,156),(82,124,114),(83,125,115),(84,126,116),(85,118,117),(86,119,109),(87,120,110),(88,121,111),(89,122,112),(90,123,113)], [(1,82,100),(2,83,101),(3,84,102),(4,85,103),(5,86,104),(6,87,105),(7,88,106),(8,89,107),(9,90,108),(10,94,66),(11,95,67),(12,96,68),(13,97,69),(14,98,70),(15,99,71),(16,91,72),(17,92,64),(18,93,65),(19,125,147),(20,126,148),(21,118,149),(22,119,150),(23,120,151),(24,121,152),(25,122,153),(26,123,145),(27,124,146),(28,61,155),(29,62,156),(30,63,157),(31,55,158),(32,56,159),(33,57,160),(34,58,161),(35,59,162),(36,60,154),(37,143,117),(38,144,109),(39,136,110),(40,137,111),(41,138,112),(42,139,113),(43,140,114),(44,141,115),(45,142,116),(46,80,128),(47,81,129),(48,73,130),(49,74,131),(50,75,132),(51,76,133),(52,77,134),(53,78,135),(54,79,127)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(2,161),(3,162),(5,155),(6,156),(8,158),(9,159),(10,42),(12,44),(13,45),(15,38),(16,39),(18,41),(19,50),(20,51),(22,53),(23,54),(25,47),(26,48),(28,86),(29,87),(31,89),(32,90),(34,83),(35,84),(55,107),(56,108),(58,101),(59,102),(61,104),(62,105),(65,112),(66,113),(68,115),(69,116),(71,109),(72,110),(73,123),(75,125),(76,126),(78,119),(79,120),(81,122),(91,136),(93,138),(94,139),(96,141),(97,142),(99,144),(127,151),(129,153),(130,145),(132,147),(133,148),(135,150)], [(1,160),(3,162),(4,154),(6,156),(7,157),(9,159),(10,42),(11,43),(13,45),(14,37),(16,39),(17,40),(20,51),(21,52),(23,54),(24,46),(26,48),(27,49),(29,87),(30,88),(32,90),(33,82),(35,84),(36,85),(56,108),(57,100),(59,102),(60,103),(62,105),(63,106),(64,111),(66,113),(67,114),(69,116),(70,117),(72,110),(73,123),(74,124),(76,126),(77,118),(79,120),(80,121),(91,136),(92,137),(94,139),(95,140),(97,142),(98,143),(127,151),(128,152),(130,145),(131,146),(133,148),(134,149)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)]])

108 conjugacy classes

class 1  2 3A···3Z6A···6Z9A···9BB
order123···36···69···9
size131···13···34···4

108 irreducible representations

dim1111333
type++
imageC1C3C3C9A4C3.A4C3×A4
kernelC32×C3.A4C3×C3.A4C3×C62C62C33C32C32
# reps1242541188

Matrix representation of C32×C3.A4 in GL5(𝔽19)

10000
011000
00700
00070
00007
,
110000
01000
00100
00010
00001
,
10000
01000
00700
00070
00007
,
10000
01000
00100
000180
002018
,
10000
01000
001800
000180
001761
,
110000
07000
000110
0031016
00009

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,11,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,2,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,18,0,17,0,0,0,18,6,0,0,0,0,1],[11,0,0,0,0,0,7,0,0,0,0,0,0,3,0,0,0,11,10,0,0,0,0,16,9] >;

C32×C3.A4 in GAP, Magma, Sage, TeX

C_3^2\times C_3.A_4
% in TeX

G:=Group("C3^2xC3.A4");
// GroupNames label

G:=SmallGroup(324,133);
// by ID

G=gap.SmallGroup(324,133);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,162,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=1,f^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽